Search results for "Compound Poisson"

showing 10 items of 12 documents

A Criterium for the Strict Positivity of the Density of the Law of a Poisson Process

2011

We translate in semigroup theory our result (Leandre, 1990) giving a necessary condition so that the law of a Markov process with jumps could have a strictly positive density. This result express, that we have to jump in a finite number of jumps in a "submersive" way from the starting point to the end point if the density of the jump process is strictly positive in . We use the Malliavin Calculus of Bismut type of (Leandre, (2008;2010)) translated in semi-group theory as a tool, and the interpretation in semi-group theory of some classical results of the stochastic analysis for Poisson process as, for instance, the formula giving the law of a compound Poisson process.

Algebra and Number TheorySemigroupStochastic processlcsh:MathematicsApplied MathematicsMarkov processlcsh:QA1-939Malliavin calculussymbols.namesakeLawCompound Poisson processJumpsymbolsFinite setJump processAnalysisMathematicsAdvances in Difference Equations
researchProduct

Itô calculus extended to systems driven by -stable Lévy white noises (a novel clip on the tails of Lévy motion)

2007

Abstract The paper deals with probabilistic characterization of the response of non-linear systems under α -stable Levy white noise input. It is shown that, by properly selecting a clip in the probability density function of the input, the moments of the increments of Levy motion process remain all of the same order ( d t ) , like the increments of the Compound Poisson process. It follows that the Ito calculus extended to Poissonian input, may also be used for α -stable Levy white noise input processes. It is also shown that, when the clip on the tails of the probability of the increments of the Levy motion approaches to infinity, the Einstein–Smoluchowsky equation is restored. Once these c…

Applied MathematicsMechanical Engineeringmedia_common.quotation_subjectMonte Carlo methodMathematical analysisTruncated Lévy motionProbabilistic logicProbability density functionItô calculuWhite noiseExtension (predicate logic)InfinityLévy processMechanics of Materialsα-Stable processeCompound Poisson processEinstein-Smoluchowsky equationMathematicsmedia_commonInternational Journal of Non-Linear Mechanics
researchProduct

A critical empirical study of three electricity spot price models

2012

We conduct an empirical analysis of three recently proposed and widely used models for electricity spot price process. The first model, called the jump-diffusion model, was proposed by Cartea and Figueroa (2005), and is a one-factor mean-reversion jump-diffusion model, adjusted to incorporate the most important characteristics of electricity prices. The second model, called the threshold model, was proposed by Roncoroni (2002) and further developed by Geman and Roncoroni (2006), and is an exponential Ornstein–Uhlenbeck process driven by a Brownian motion and a state-dependent compound Poisson process. It is designed to capture both statistical and pathwise properties of electricity spot pri…

Economics and EconometricsSpot contractComputer scienceJump diffusionLinear modelOrnstein–Uhlenbeck processWirtschaftswissenschaftenGeneral EnergyMathematikCompound Poisson processEconometricsMean reversionForward priceThreshold modelEnergy Economics
researchProduct

Catastrophic risks and the pricing of catastrophe equity put options

2021

In this paper, after a review of the most common financial strategies and products that insurance companies use to hedge catastrophic risks, we study an option pricing model based on processes with jumps where the catastrophic event is captured by a compound Poisson process with negative jumps. Given the importance that catastrophe equity put options (CatEPuts) have in this context, we introduce a pricing approach that provides not only a theoretical contribution whose applicability remains confined to purely numerical examples and experiments, but which can be implemented starting from real data and applied to the evaluation of real CatEPuts. We propose a calibration framework based on his…

Market capitalizationSettore SECS-P/11 - Economia degli Intermediari Finanziari0211 other engineering and technologiesContext (language use)02 engineering and technologyBlack–Scholes modelImplied volatilityManagement Information SystemsCompound Poisson processG1Economics021108 energyVariance gammaG12Hedge (finance)C2Original Paper021103 operations researchActuarial scienceCompound PoissonCatastrophe equity put options · Variance gamma · Compound Poisson · Double-calibrationEquity (finance)Double-calibrationVariance-gamma distributionCatastrophe equity put options · Variance gamma · Compound Poisson ·Double-calibrationC63G22Catastrophe equity put optionsInformation SystemsComputational Management Science
researchProduct

Segmentation algorithm for non-stationary compound Poisson processes

2010

We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of a time series. The process is composed of consecutive patches of variable length. In each patch the process is described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated with a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non-stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galván, et al. [Phys. Rev. Lett. 87, 168105 (2001)]. We show that the new algori…

Series (mathematics)GeneralizationEconophysicsProcess (computing)Nonparametric statisticsStochastic processes Statistics Financial markets EconophysicsStochastic processeFinancial marketCondensed Matter PhysicsPoisson distribution01 natural sciencesSignal010305 fluids & plasmasElectronic Optical and Magnetic Materialssymbols.namesake0103 physical sciencesCompound Poisson processsymbolsSegmentation010306 general physicsAlgorithmStatisticMathematicsThe European Physical Journal B
researchProduct

Modelling the Frequency of Interarrival Times and Rainfall Depths with the Poisson Hurwitz-Lerch Zeta Distribution

2022

The Poisson-stopped sum of the Hurwitz–Lerch zeta distribution is proposed as a model for interarrival times and rainfall depths. Theoretical properties and characterizations are investigated in comparison with other two models implemented to perform the same task: the Hurwitz–Lerch zeta distribution and the one inflated Hurwitz–Lerch zeta distribution. Within this framework, the capability of these three distributions to fit the main statistical features of rainfall time series was tested on a dataset never previously considered in the literature and chosen in order to represent very different climates from the rainfall characteristics point of view. The results address t…

Statistics and ProbabilityHurwitz-Lerch Zeta distribution; log-concavity; compound poisson distribution; one inflated model; moment; simulated annealingHurwitz-Lerch zeta distributionSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliStatistical and Nonlinear Physicssimulated annealinglog-concavityone inflated modelAnalysiscompound poisson distributionmoment
researchProduct

Hitting straight lines by compound Poisson process paths

1990

In a recent article Mallows and Nair (1989,Ann. Inst. Statist. Math.,41, 1–8) determined the probability of intersectionP{X(t)=αt for somet≥0} between a compound Poisson process {X(t), t≥0} and a straight line through the origin. Using four different approaches (direct probabilistic, via differential equations and via Laplace transforms) we extend their results to obtain the probability of intersection between {X(t), t≥0} and arbitrary lines. Also, we display a relationship with the theory of Galton-Watson processes. Additional results concern the intersections with two (or more) parallel lines.

Statistics and ProbabilityLaplace transformDifferential equationMathematical analysisProbabilistic logicPoisson processParallelGalton–Watson processCombinatoricssymbols.namesakeIntersectionCompound Poisson processsymbolsMathematicsAnnals of the Institute of Statistical Mathematics
researchProduct

Efficient Simulation of Multivariate Binomial and Poisson Distributions

1998

Power investigations, for example, in statistical procedures for the assessment of agreement among multiple raters often require the simultaneous simulation of several dependent binomial or Poisson distributions to appropriately model the stochastical dependencies between the raters' results. Regarding the rather large dimensions of the random vectors to be generated and the even larger number of interactions to be introduced into the simulation scenarios to determine all necessary information on their distributions' dependence stucture, one needs efficient and fast algorithms for the simulation of multivariate Poisson and binomial distributions. Therefore two equivalent models for the mult…

Statistics and ProbabilityPoisson binomial distributionNegative binomial distributionContinuity correctionGeneral MedicinePoisson distributionBinomial distributionsymbols.namesakeUnivariate distributionCompound Poisson distributionStatisticssymbolsApplied mathematicsStatistics Probability and UncertaintyMathematicsCount dataBiometrical Journal
researchProduct

A note on Malliavin smoothness on the Lévy space

2017

We consider Malliavin calculus based on the Itô chaos decomposition of square integrable random variables on the Lévy space. We show that when a random variable satisfies a certain measurability condition, its differentiability and fractional differentiability can be determined by weighted Lebesgue spaces. The measurability condition is satisfied for all random variables if the underlying Lévy process is a compound Poisson process on a finite time interval. peerReviewed

Statistics and ProbabilitySmoothness (probability theory)matematiikkaLévy processMalliavin calculus010102 general mathematicsMalliavin calculus01 natural sciencesLévy processinterpolation010104 statistics & probability60H07Mathematics::ProbabilitySquare-integrable functionCompound Poisson processApplied mathematicsinterpolointiDifferentiable functiontila0101 mathematicsStatistics Probability and UncertaintyLp spaceRandom variable60G51MathematicsElectronic Communications in Probability
researchProduct

A simplified analysis for the evaluation of stochastic response of elasto-plastic oscillators

1999

Abstract The paper deals with dynamic hysteretic oscillators without post-yielding hardening, called ideal elasto-plastic oscillators, subjected to white noise. They are characterized by the fact that they do not reach stationarity even though excited by stationary stochastic processes. A simplified solution procedure to capture this behaviour is presented in this paper. It is based on modelling the accumulated plastic deformations as a homogeneous compound Poisson process. In particular, two aspects are addressed in the paper: (1) evaluation of the probabilistic parameters of the accumulated plastic deformation process; and (2) evaluation of the second-order cumulants of the response by me…

Stochastic processMechanical EngineeringMonte Carlo methodProbabilistic logicAerospace EngineeringHomogeneous compound Poisson process modelOcean EngineeringStatistical and Nonlinear PhysicsWhite noiseCondensed Matter PhysicsElastoplastic oscillatorsNuclear Energy and EngineeringCompound Poisson processCalculusHardening (metallurgy)Applied mathematicsRandom vibrationElastoplastic oscillators; Homogeneous compound Poisson process modelCivil and Structural EngineeringMathematicsParametric statisticsProbabilistic Engineering Mechanics
researchProduct